The system of linear equations  $3 x-2 y-k z=10$; $2 x-4 y-2 z=6$ ; $x+2 y-z=5\, m$ is inconsistent if

  • [JEE MAIN 2021]
  • A

    $k =3, m =\frac{4}{5}$

  • B

    $k \neq 3, m \in R$

  • C

    $k \neq 3, m \neq \frac{4}{5}$

  • D

    $k =3, m \neq \frac{4}{5}$

Similar Questions

If $\left| {\begin{array}{*{20}{c}}{a\, + \,1}&{a\, + \,2}&{a\, + \,p}\\{a\, + \,2}&{a\, +\,3}&{a\, + \,q}\\{a\, + \,3}&{a\, + \,4}&{a\, + \,r}\end{array}} \right|$ $= 0$ , then $p, q, r$ are in :

The system of linear equations $\lambda x+2 y+2 z=5$ ; $2 \lambda x+3 y+5 z=8$ ; $4 x+\lambda y+6 z=10$ has

  • [JEE MAIN 2020]

If the system of equations

$x-2 y+3 z=9$

$2 x+y+z=b$

$x-7 y+a z=24$

has infinitely many solutions, then $a - b$ is equal to

  • [JEE MAIN 2020]

If $a > 0$and discriminant of $a{x^2} + 2bx + c$is negative, then $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ is

  • [AIEEE 2002]

The determinant $\left| {\begin{array}{*{20}{c}}{\cos \,\,(\theta \, + \,\phi )}&{ - \,\sin \,\,(\theta \, + \,\phi )}&{\cos \,2\phi }\\{\sin \,\theta }&{\cos \,\theta }&{\sin \,\phi }\\{ - \,\cos \,\theta }&{\sin \,\theta }&{\cos \,\phi }\end{array}} \right|$ is :